
Math8302 HW 1

Exercises in Chapter 6: 5.12, 6.6, 6.7, 6.11, 16.10, 17.15, 7.3, 12.3, 12.19, 12.20
5 problems graded: 6.11, 16.10, 12.3, 12.19, 12.20, each problem 15 points.
Completion 25 points.

Ex. 6.5.12. Suppose c ∈ Ck and ∂Ck = 0. Then

Gk(c)− Fk(c) = ∂Dk+1Hk(c) +Hk−1∂
C
k (c) = ∂Dk+1Hk(c)

so G∗([c]) = [Gk(c)] = [Fk(c)] = F∗([c]).

Ex. 6.6.6. If c = c′, then c− c′ ∈ Sk(A), so c− c′ = i#a, a ∈ Sk(A). Then

∂
(X,A)
k (c) = ∂Xk (c) = ∂Xk (c′ + i#a) = ∂Xk (c′) + i#∂Ak (a) = ∂Xk (c′)

with the last equality coming since ∂Ak (a) ∈ Sk−1(A).

Ex. 6.6.7. The argument reduces to using the fact f# : S(X)→ S(Y ) is a chain map.

f#∂
(X,A)
k (c) = f#(∂Xk (c)) = f#∂Xk (c) = ∂Yk f#(c) = ∂

(Y,B)
k (f#(c)) = ∂

(Y,B)
k f#(c).

Ex. 6.6.11. (a) There is a unique continuous map from ∆k to P , so the statement
follows.

(b) For k > 0, ∂k(σk) =
∑k

i=0(−1)iσkFi =
∑k

i=0(−1)iσk−1. This has an even number
of terms, evenly split with ±1 coefficients, when k is odd. When k is even, it has one more
term with a positive coefficient. For k = 0m ∂0 = 0 by definition.

(c) H0(P ) = Z/0 = Z. For k = 2p + 1 > 0, ker(∂k) = Sk(P ) = im(∂k+1) so
Hk(P ) = 0. For k = 2p > 0, ker(∂k) = 0 so Hk(P ) = 0.

Ex. 6.16.10. We compute

∂Xi+1H
X
i (σ) = ∂Xi+1(σ × id)#H

∆i
i ([e0, · · · , ei]) = (σ × id)#∂

∆i
i+1H

∆i
i ([e0, · · · , ei]).

Similarly,
HX

i−1∂
X
i (σ) = (σ × id)#H

∆i
i−1∂

∆i
i ([e0, · · · , ei]).

Also,
((iX1 )# − (iX0 )#)(σ) = (σ × id)#((i∆i

1 )# − (i∆i
0 )#)([e0, · · · , ei]).

Thus the formula for X follows fro the formula for ∆i by composing with the induced map
(σ × id)#. The naturality formula then follows since

(f × id)#(σ × id)# = (fσ × id)#.

Ex. 6.17.15. This is done inductively by first defining it for [e0, · · · , en] by

Hn([e0, · · · , en]) = t̃.((Id− Sd−Hn−1∂)[e0, · · · , en]).
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By Exercise 6.17.2,

∂Hn([e0, · · · , en]) = (Id−Sd−Hn−1∂)(∂[e0, · · · , en])− t̃.∂(Id−Sd−Hn−1∂)([e0, · · · , en])

when t̃ is the barycenter of the simplex.
It suffices to show that the 2nd term vanishes.
By induction, we have ∂Hn−1 +Hn−2∂ = Id− Sd. Applying it to ∂([e0, · · · , en]), we

have

∂Hn−1∂([e0, · · · , en]) = (Id−Sd)(∂[e0, · · · , en])−Hn−2∂
2([e0, · · · , en]) = (Id−Sd)(∂[e0, · · · , en]),

namely, ∂(Id− Sd−Hn−1∂)([e0, · · · , en]) = 0.
The extension to singular simplices and chains and the formula there then follows the

same argument as before.

Ex. 6.7.3. (a) When x = [α + β], then ∂(α) + ∂(β) = 0 since α + β is a cycle. But
then this means ∂(α) = −∂(β). Since they are equal, they lie in Sk−1(A) ∩ Sk−1(B) =
Sk−1(A ∩B), where this is considered as a subcomplex of Sk−1(X) by inclusion.

(b) The map δ is induced from the boundary map ∂ from part (b) of Exercise 6.7.2.
Here δ(x) = ∂([α + β]). The long exact sequence in (b) is induced from the short exact
sequence of (a). To compute the boundary map, we first pull α + β back to (α, β) ∈
Sk(A) ⊕ Sk(B). Then we compute (∂(α), ∂(β)) = (∂(α),−∂(α)) and then pull this ∂α ∈
Sk−1(A ∩B) and get

δ(x) = [∂(α)].

Ex. 6.12.3. (a) Each point (x, t) ∈ X × S1 can be connected via a path to a point
(x, 1). In the quotient space all of the points (x, 1) are identified to a single point, so there
is a single path component.

(b) In ΣX, there is a bicollar neighborhood N of X which is the image of X ×
[−1/2, 1/2] and this can be used to justify the Mayer-Vietoris sequence where A = X ×
[−1, 0]/ ∼⊂ ΣX and B = X× [0, 1]/ ∼⊂ ΣX. Note that A,B are each contractible, where
deformation retracts to [(x,−1)] and B deformation retracts to [(x, 1)]. Thus Hk(A) =
Hk(B) = 0 for k > 0. Then the portion of the Mayer-Vietoris sequence

0 = Hk+1(A)⊕Hk+1(B) −→ Hk+1(ΣX) −→ Hk(X) −→ Hk(A)⊕Hk(B) = 0

implies Hk+1(ΣX) ' Hk(X).
(c) Here we take the portion of the Mayer-Vietoris sequence

0 = H1(A)⊕H1(B)→ H1(ΣX)→ H0(X)→ H0(A)⊕H0(B) = Z⊕ Z→ H0(ΣX) = Z→ 0.

The last map is (a, b)→ a+ b and so its kernel is isomorphic to Z, Thus the sequence gives
a short exact sequence

0→ H1(ΣX)→ H0(X)→ Z→ 0

which splits to give H1(ΣX)⊕ Z ' H0(X) since Z is free abelian.
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Ex. 6.12.19. (a) Since P(1), Q(1) each deformation retract to a wedge of circles, their
nonzero homology occurs only in dimensions 1 and 0. The intersection P(1) ∩ Q(1) is a
circle. From the MV sequence, the terms Hk+1(P(1)) ⊕ Hk+1(Q(1)) and Hk(P(1) ∩ Q(1))
vanish for k > 1, giving Hk+1(N) = 0 for k > 1.

(b) The MV sequence gives

0→ H2(N)→ H1(S1)→ H1(P(1))⊕H1(Q(1)).

The map H1(S1) → H1(P(1)) is the map shown above to be multiplication by 2, so is
injective. Hence the map i1 : H1(S1) → H1(P(1)) ⊕ H1(Q(1)) is injective as well. Thus
H2(N) ' ker(i1) = 0.

(c) We computed earlier that π1(P (k), x) is < a1, · · · , ak|a2
1 · · · a2

k >. The abelianiza-
tion of this group is (k− 1)Z⊕Z2. Thus H1(P (k)) is generated by a1 + · · ·+ ak, a2, · · · , ah
with 2(a1 + · · ·+ ak) = 0.

(d) Since P is path connected, H0(P (k)) ' Z.

Ex. 6.12.20. (a) Think of the torus coming from a rectangle with identifications on
its boundary. Form a small rectangle in the middle and remove it to form T(1). Then
on π1 the generator of the boundary circle is mapped to the conjugate of the element of
aba−1b−1. When we abelianize, this becomes the zero map.

(b) The term T(1) is homotopy equivalent to S1 ∧ S1, so has trivial homology in
dimensions > 1. From the MV sequence, we get Hk(T ) = 0 for k > 2 and H1(T ) '
H1(S1) ' Z.

(c) π1(T ) ' Z⊕ Z, so its abelianization H1(T ) ' Z⊕ Z. By path connectivity,
H0(T ) ' Z.
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