Math8302 HW 1

Exercises in Chapter 6: 5.12, 6.6, 6.7, 6.11, 16.10, 17.15, 7.3, 12.3, 12.19, 12.20 5 problems graded: $6.11,16.10,12.3,12.19,12.20$, each problem 15 points. Completion 25 points.

Ex. 6.5.12. Suppose $c \in C_{k}$ and $\partial_{k}^{C}=0$. Then

$$
G_{k}(c)-F_{k}(c)=\partial_{k+1}^{D} H_{k}(c)+H_{k-1} \partial_{k}^{C}(c)=\partial_{k+1}^{D} H_{k}(c)
$$

so $G_{*}([c])=\left[G_{k}(c)\right]=\left[F_{k}(c)\right]=F_{*}([c])$.
Ex. 6.6.6. If $\bar{c}=\overline{c^{\prime}}$, then $c-c^{\prime} \in S_{k}(A)$, so $c-c^{\prime}=i_{\#} a, a \in S_{k}(A)$. Then

$$
\partial_{k}^{(X, A)}(\bar{c})=\overline{\partial_{k}^{X}(c)}=\overline{\partial_{k}^{X}\left(c^{\prime}+i_{\#} a\right)}=\overline{\partial_{k}^{X}\left(c^{\prime}\right)}+\overline{i_{\#} \partial_{k}^{A}(a)}=\overline{\partial_{k}^{X}\left(c^{\prime}\right)}
$$

with the last equality coming since $\partial_{k}^{A}(a) \in S_{k-1}(A)$.
Ex. 6.6.7. The argument reduces to using the fact $f_{\#}: S(X) \rightarrow S(Y)$ is a chain map.

$$
f_{\#} \partial_{k}^{(X, A)}(\bar{c})=f_{\#}\left(\overline{\partial_{k}^{X}(c)}\right)=\overline{f_{\#} \partial_{k}^{X}(c)}=\overline{\partial_{k}^{Y} f_{\#}(c)}=\partial_{k}^{(Y, B)}\left(\overline{f_{\#}(c)}\right)=\partial_{k}^{(Y, B)} f_{\#}(\bar{c}) .
$$

Ex. 6.6.11. (a) There is a unique continuous map from Δ_{k} to P, so the statement follows.
(b) For $k>0, \partial_{k}\left(\sigma_{k}\right)=\sum_{i=0}^{k}(-1)^{i} \sigma_{k} F_{i}=\sum_{i=0}^{k}(-1)^{i} \sigma_{k-1}$. This has an even number of terms, evenly split with ± 1 coefficients, when k is odd. When k is even, it has one more term with a positive coefficient. For $k=0 \mathrm{~m} \partial_{0}=0$ by definition.
(c) $H_{0}(P)=\mathbf{Z} / \mathbf{0}=\mathbf{Z}$. For $k=2 p+1>0, \operatorname{ker}\left(\partial_{k}\right)=S_{k}(P)=i m\left(\partial_{k+1}\right)$ so $H_{k}(P)=0$. For $k=2 p>0, \operatorname{ker}\left(\partial_{k}\right)=0$ so $H_{k}(P)=0$.

Ex. 6.16.10. We compute

$$
\partial_{i+1}^{X} H_{i}^{X}(\sigma)=\partial_{i+1}^{X}(\sigma \times i d)_{\#} H_{i}^{\Delta_{i}}\left(\left[e_{0}, \cdots, e_{i}\right]\right)=(\sigma \times i d)_{\#} \partial_{i+1}^{\Delta_{i}} H_{i}^{\Delta_{i}}\left(\left[e_{0}, \cdots, e_{i}\right]\right) .
$$

Similarly,

$$
H_{i-1}^{X} \partial_{i}^{X}(\sigma)=(\sigma \times i d)_{\#} H_{i-1}^{\Delta_{i}} \partial_{i}^{\Delta_{i}}\left(\left[e_{0}, \cdots, e_{i}\right]\right)
$$

Also,

$$
\left(\left(i_{1}^{X}\right)_{\#}-\left(i_{0}^{X}\right)_{\#}\right)(\sigma)=(\sigma \times i d)_{\#}\left(\left(i_{1}^{\Delta_{i}}\right)_{\#}-\left(i_{0}^{\Delta_{i}}\right)_{\#}\right)\left(\left[e_{0}, \cdots, e_{i}\right]\right)
$$

Thus the formula for X follows fro the formula for Δ_{i} by composing with the induced map $(\sigma \times i d)_{\#}$. The naturality formula then follows since

$$
(f \times i d)_{\#}(\sigma \times i d)_{\#}=(f \sigma \times i d)_{\#} .
$$

Ex. 6.17.15. This is done inductively by first defining it for $\left[e_{0}, \cdots, e_{n}\right]$ by

$$
H_{n}\left(\left[e_{0}, \cdots, e_{n}\right]\right)=\tilde{t} .\left(\left(I d-S d-H_{n-1} \partial\right)\left[e_{0}, \cdots, e_{n}\right]\right) .
$$

By Exercise 6.17.2,
$\partial H_{n}\left(\left[e_{0}, \cdots, e_{n}\right]\right)=\left(I d-S d-H_{n-1} \partial\right)\left(\partial\left[e_{0}, \cdots, e_{n}\right]\right)-\tilde{t} . \partial\left(I d-S d-H_{n-1} \partial\right)\left(\left[e_{0}, \cdots, e_{n}\right]\right)$
when \tilde{t} is the barycenter of the simplex.
It suffices to show that the 2 nd term vanishes.
By induction, we have $\partial H_{n-1}+H_{n-2} \partial=I d-S d$. Applying it to $\partial\left(\left[e_{0}, \cdots, e_{n}\right]\right)$, we have
$\partial H_{n-1} \partial\left(\left[e_{0}, \cdots, e_{n}\right]\right)=(I d-S d)\left(\partial\left[e_{0}, \cdots, e_{n}\right]\right)-H_{n-2} \partial^{2}\left(\left[e_{0}, \cdots, e_{n}\right]\right)=(I d-S d)\left(\partial\left[e_{0}, \cdots, e_{n}\right]\right)$,
namely, $\partial\left(I d-S d-H_{n-1} \partial\right)\left(\left[e_{0}, \cdots, e_{n}\right]\right)=0$.
The extension to singular simplices and chains and the formula there then follows the same argument as before.

Ex. 6.7.3. (a) When $x=[\alpha+\beta]$, then $\partial(\alpha)+\partial(\beta)=0$ since $\alpha+\beta$ is a cycle. But then this means $\partial(\alpha)=-\partial(\beta)$. Since they are equal, they lie in $S_{k-1}(A) \cap S_{k-1}(B)=$ $S_{k-1}(A \cap B)$, where this is considered as a subcomplex of $S_{k-1}(X)$ by inclusion.
(b) The map δ is induced from the boundary map ∂ from part (b) of Exercise 6.7.2. Here $\delta(x)=\partial([\alpha+\beta])$. The long exact sequence in (b) is induced from the short exact sequence of (a). To compute the boundary map, we first pull $\alpha+\beta$ back to $(\alpha, \beta) \in$ $S_{k}(A) \oplus S_{k}(B)$. Then we compute $(\partial(\alpha), \partial(\beta))=(\partial(\alpha),-\partial(\alpha))$ and then pull this $\partial \alpha \in$ $S_{k-1}(A \cap B)$ and get

$$
\delta(x)=[\partial(\alpha)] .
$$

Ex. 6.12.3. (a) Each point $(x, t) \in X \times S^{1}$ can be connected via a path to a point $(x, 1)$. In the quotient space all of the points $(x, 1)$ are identified to a single point, so there is a single path component.
(b) In ΣX, there is a bicollar neighborhood N of X which is the image of $X \times$ $[-1 / 2,1 / 2]$ and this can be used to justify the Mayer-Vietoris sequence where $A=X \times$ $[-1,0] / \sim \subset \Sigma X$ and $B=X \times[0,1] / \sim \subset \Sigma X$. Note that A, B are each contractible, where deformation retracts to $[(x,-1)]$ and B deformation retracts to $[(x, 1)]$. Thus $H_{k}(A)=$ $H_{k}(B)=0$ for $k>0$. Then the portion of the Mayer-Vietoris sequence

$$
0=H_{k+1}(A) \oplus H_{k+1}(B) \longrightarrow H_{k+1}(\Sigma X) \longrightarrow H_{k}(X) \longrightarrow H_{k}(A) \oplus H_{k}(B)=0
$$

implies $H_{k+1}(\Sigma X) \simeq H_{k}(X)$.
(c) Here we take the portion of the Mayer-Vietoris sequence
$0=H_{1}(A) \oplus H_{1}(B) \rightarrow H_{1}(\Sigma X) \rightarrow H_{0}(X) \rightarrow H_{0}(A) \oplus H_{0}(B)=\mathbf{Z} \oplus \mathbf{Z} \rightarrow H_{0}(\Sigma X)=\mathbf{Z} \rightarrow 0 . \square$
The last map is $(a, b) \rightarrow a+b$ and so its kernel is isomorphic to \mathbf{Z}, Thus the sequence gives a short exact sequence

$$
0 \rightarrow H_{1}(\Sigma X) \rightarrow H_{0}(X) \rightarrow \mathbf{Z} \rightarrow 0
$$

which splits to give $H_{1}(\Sigma X) \oplus \mathbf{Z} \simeq H_{0}(X)$ since \mathbf{Z} is free abelian.

Ex. 6.12.19. (a) Since $P_{(1)}, Q_{(1)}$ each deformation retract to a wedge of circles, their nonzero homology occurs only in dimensions 1 and 0 . The intersection $P_{(1)} \cap Q_{(1)}$ is a circle. From the MV sequence, the terms $H_{k+1}\left(P_{(1)}\right) \oplus H_{k+1}\left(Q_{(1)}\right)$ and $H_{k}\left(P_{(1)} \cap Q_{(1)}\right)$ vanish for $k>1$, giving $H_{k+1}(N)=0$ for $k>1$.
(b) The MV sequence gives

$$
0 \rightarrow H_{2}(N) \rightarrow H_{1}\left(S^{1}\right) \rightarrow H_{1}\left(P_{(1)}\right) \oplus H_{1}\left(Q_{(1)}\right)
$$

The map $H_{1}\left(S^{1}\right) \rightarrow H_{1}\left(P_{(1)}\right)$ is the map shown above to be multiplication by 2 , so is injective. Hence the map $i_{1}: H_{1}\left(S^{1}\right) \rightarrow H_{1}\left(P_{(1)}\right) \oplus H_{1}\left(Q_{(1)}\right)$ is injective as well. Thus $H_{2}(N) \simeq \operatorname{ker}\left(i_{1}\right)=0$.
(c) We computed earlier that $\pi_{1}\left(P^{(k)}, x\right)$ is $<a_{1}, \cdots, a_{k} \mid a_{1}^{2} \cdots a_{k}^{2}>$. The abelianization of this group is $(k-1) \mathbf{Z} \oplus \mathbf{Z}_{2}$. Thus $H_{1}\left(P^{(k)}\right)$ is generated by $a_{1}+\cdots+a_{k}, a_{2}, \cdots, a_{h}$ with $2\left(a_{1}+\cdots+a_{k}\right)=0$.
(d) Since P is path connected, $H_{0}\left(P^{(k)}\right) \simeq \mathbf{Z}$.

Ex. 6.12.20. (a) Think of the torus coming from a rectangle with identifications on its boundary. Form a small rectangle in the middle and remove it to form $T_{(1)}$. Then on π_{1} the generator of the boundary circle is mapped to the conjugate of the element of $a b a^{-1} b^{-1}$. When we abelianize, this becomes the zero map.
(b) The term $T_{(1)}$ is homotopy equivalent to $S^{1} \wedge S^{1}$, so has trivial homology in dimensions >1. From the MV sequence, we get $H_{k}(T)=0$ for $k>2$ and $H_{1}(T) \simeq$ $H_{1}\left(S^{1}\right) \simeq \mathbf{Z}$.
(c) $\pi_{1}(T) \simeq \mathbf{Z} \oplus \mathbf{Z}$, so its abelianization $H_{1}(T) \simeq \mathbf{Z} \oplus \mathbf{Z}$. By path connectivity, $H_{0}(T) \simeq \mathbf{Z}$.

