Math8302 HW 1

Exercises in Chapter 6: 5.12, 6.6, 6.7, 6.11, 16.10, 17.15, 7.3, 12.3, 12.19, 12.20
5 problems graded: 6.11, 16.10, 12.3, 12.19, 12.20, each problem 15 points.
Completion 25 points.

Ex. 6.5.12. Suppose ¢ € Cj, and 9¢ = 0. Then
Gr(c) = Fi(c) = 0Py 1 Hi(c) + Hp—10f (¢) = 0k, Hi(c)

50 Gu([c]) = [Gr(0)] = [Fi(c)] = Fi([d])-
Ex. 6.6.6. If 2= ¢/, then ¢ — ¢’ € S,(A), so ¢ — ¢/ =iga,a € Si(A). Then

8IEX,A)(E) _ ali((c) _ 6]?((01 + i#CL) e 6?(6/) + 2#6,?(@) = 6[5(6/)

with the last equality coming since 9i'(a) € Sk_1(A).
Ex. 6.6.7. The argument reduces to using the fact fx : S(X) — S(Y) is a chain map.

F205 V(@) = f208 () = f20X(c) = 0Y fulo) = 0y (Fu(0) = 0" fu (o).

Ex. 6.6.11. (a) There is a unique continuous map from Ay to P, so the statement
follows.

(b) For k > 0, Ox(0y) = Zfzo(—l)iakFi = Zfzo(—l)iak_l. This has an even number
of terms, evenly split with 1 coefficients, when k is odd. When £ is even, it has one more
term with a positive coefficient. For £k = 0m 0y = 0 by definition.

(c) Hy(P) = Z/0 = Z. For k = 2p+1 > 0, ker(0) = Sk(P) = im(9k4+1) so
Hyi(P)=0. For k =2p >0, ker(0;) = 0 so H(P) = 0.

Ex. 6.16.10. We compute

07 H¥ (0) = 051 (0 x id) g H ([eo, -+, i]) = (0 x id) 403 H ([eo, -+ eq]).
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Similarly,
HX 107 (0) = (0 x id) g H2, 07 ([eo, -+ ei]).

Also,
(114 — (g )4)(0) = (0 x id)x (i) — (i5")4) ([eo, - - - s e4))-

Thus the formula for X follows fro the formula for A; by composing with the induced map
(0 x id)4. The naturality formula then follows since

(f X id)#(d X Zd)# = (fO' X Zd)#
Ex. 6.17.15. This is done inductively by first defining it for [eg, - - -, e,]| by
H,(leo, -+ en]) =t.((Id — Sd — H,_10)[eq, - - -, en)).
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By Exercise 6.17.2,
OH,([eg, -, en]) = (Id— Sd — H,_10)(0eq, - - -, en]) —t.0(Id — Sd — Hp,_10)([eq, - - -, €n])

when t is the barycenter of the simplex.

It suffices to show that the 2nd term vanishes.

By induction, we have 0H,,_1 + H,,_20 = Id — Sd. Applying it to 9([eg, -, €ey]), we
have

OH,_10([eq, -, en]) = (Id—Sd)(Oeg, - - -, en])—Hn_20*([en, - - -, en]) = (Id—Sd)(Oeg, - - -, en]) ]

namely, 0(Id — Sd — H,,—10)([eo, -+, en]) = 0.
The extension to singular simplices and chains and the formula there then follows the
same argument as before.

Ex. 6.7.3. (a) When = = [a + ], then d(a) 4+ 9(5) = 0 since a + § is a cycle. But
then this means 0(a) = —9(B). Since they are equal, they lie in Si_1(A) N Sp_1(B) =
Sk—1(A N B), where this is considered as a subcomplex of S;_1(X) by inclusion.

(b) The map ¢ is induced from the boundary map 0 from part (b) of Exercise 6.7.2.
Here 6(x) = 9(Ja + B]). The long exact sequence in (b) is induced from the short exact
sequence of (a). To compute the boundary map, we first pull o + 8 back to («, ) €
Sk(A) @ Sk(B). Then we compute (9(«),d(8)) = (0(«r), —9(«r)) and then pull this da €
Sk—1(AN B) and get

Ex. 6.12.3. (a) Each point (z,t) € X x S! can be connected via a path to a point
(x,1). In the quotient space all of the points (x, 1) are identified to a single point, so there
is a single path component.

(b) In XX, there is a bicollar neighborhood N of X which is the image of X x
[—1/2,1/2] and this can be used to justify the Mayer-Vietoris sequence where A = X X
[—1,0]/ ~C ¥X and B = X x[0,1]/ ~C ¥X. Note that A, B are each contractible, where
deformation retracts to [(x,—1)] and B deformation retracts to [(z,1)]. Thus Hy(A) =
Hy(B) =0 for k > 0. Then the portion of the Mayer-Vietoris sequence

0= Hk+1(A) D .Hk;+1(B) — Hk-+1(ZX) — Hk(X) — Hk(A) D Hk(B) =0

implies Hy11(XX) ~ Hi(X).
(c) Here we take the portion of the Mayer-Vietoris sequence

0= Hy(A)BH(B) = H1(SX) = Ho(X) = Ho(A)®Hy(B) =Z @ Z — Hy(SX) =Z — 0

The last map is (a,b) — a+b and so its kernel is isomorphic to Z, Thus the sequence gives
a short exact sequence
0— Hi(2X) = Ho(X)—>Z—0

which splits to give H1(XX) @ Z ~ Hy(X) since Z is free abelian.
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Ex. 6.12.19. (a) Since FP(1), Q1) each deformation retract to a wedge of circles, their
nonzero homology occurs only in dimensions 1 and 0. The intersection Py N Q) is a
circle. From the MV sequence, the terms Hyi1(P1)) © Hry1(Q(1y) and Hy(Py N Q1))
vanish for k > 1, giving Hi+1(N) =0 for k& > 1.

(b) The MV sequence gives

0 — Hy(N) = Hi(S") — H1(Py) ® Hi(Q(1))-

The map H(S') — Hy(Pq)) is the map shown above to be multiplication by 2, so is
injective. Hence the map i1 : Hi(S') — Hi(Py)) ® Hi1(Q)) is injective as well. Thus
HQ(N) ~ /{:er(il) =0.

(c) We computed earlier that m(P*) z) is < ay,---,agla?---a? >. The abelianiza-
tion of this group is (k —1)Z @ Zy. Thus Hy(P™®) is generated by a; +- -+ ax, az, - - -, ap
with 2(a; + -+ ax) = 0.

(d) Since P is path connected, Ho(P®*)) ~ Z.

Ex. 6.12.20. (a) Think of the torus coming from a rectangle with identifications on
its boundary. Form a small rectangle in the middle and remove it to form 7(;). Then
on m; the generator of the boundary circle is mapped to the conjugate of the element of
aba='b~!. When we abelianize, this becomes the zero map.

(b) The term T(;) is homotopy equivalent to S1 A S') so has trivial homology in
dimensions > 1. From the MV sequence, we get Hy(T) = 0 for k > 2 and Hy(T) ~
H 1(S 1) ~ 7.

(¢) m(T) ~ Z®Z, so its abelianization H{(T) ~ Z ® Z. By path connectivity,



